Studies in Tantalum Oxide Crystal Growth*

G. M. WOLTEN AND A. B. CHASE

The Aerospace Corporation, El Segundo, California 90245

Received September 25, 1969

Crystals of β -Ta₂O₅ and γ -Nb₂O₅ have been grown from molten KPO₃ and mixtures of KPO₃ and KVO₃. A search for additional polymorphs of β -Ta₂O₅ in this system has instead revealed five not hitherto reported tantalum compounds containing potassium or phosphorus or both and, in one case, vanadium.

1. Introduction

The unit cell of β -Ta₂O₅ has long been the subject of controversy (1). Recently, we obtained this information when we succeeded in growing threedimensional single crystals of β -Ta₂O₅ and the isomorphous γ -Nb₂O₅ (2).¹ There appeared reason to believe, however, that other polymorphs of β -Ta₂O₅ could exist, and our crystal-growth experiments were continued in order to explore this possibility.

Five additional crystalline species were obtained. Initially, some of these appeared to be the suspected polymorphs, but ultimately all were shown to be hitherto unreported compounds of tantalum oxide with potassium or phosphorus or both and, in one case, vanadium. Table I summarizes the crystal growth experiments, and Table II lists the crystallographic data.

II. Compositions

The compositions listed in Table II were ascertained as follows. Since there was insufficient material available for wet chemical analysis, a small crystal of each compound was subjected to electron microprobe analysis.² Emission lines for potassium, phosphorus, vanadium, and tantalum were observed where present, and their relative intensities estab-

* This work was supported by the United States Air Force under Air Force Contract No. FO4701-69-C-0066.

¹ R. S. Roth of the U.S. National Bureau of Standards believes, on the basis of his own studies (private communication), that our β -Ta₂O₅ and γ -Nb₂O₅ crystals contain some K⁺ ions as essential parts of the structure. This possibility is being investigated.

² Microprobe work done by Dr. J. Ogren, Autonetics Division, North American Rockwell Corp., Anaheim, Calif. lished a *relative* scale of concentrations for these elements. Enough material for a quantitative spectrographic analysis was then isolated for compounds β -3 and GF, and the results were compared

TABLE I

Solvent	Solute	Products	
KPO3	Nb ₂ O ₅	γ-Nb₂O5, small amount	
67 w/o	33 w/o	of PNb9O25 (3)	
	Ta ₂ O ₅	β -Ta ₂ O ₅ , very small	
	33 w/o	amount of β -2	
	Nb ₂ O ₅ -Ta ₂ O ₅	Solute ratios used 9:1, 8:2, 7:3, 6:4	
	33 w/o	Solid solution crystals	
		with γ -Nb ₂ O ₅ structure	
KPO3	Ta ₂ O ₅	β -3 and some M-4	
95 w/o	5 w/o		
KVO ₃	Nb ₂ O ₅	α -Nb ₂ O ₅ , extremely	
67 w/o	33 w/o	small, acicular crystals	
	Ta ₂ O ₅	GF, extremely small,	
	33 w/o	acicular crystals	
KVO3 60 m/o	Ta ₂ O ₅	GF, larger, rectangular	
KPO3 30 m/o	10 m/o	crystals	
KPO3 85 m/o	Ta ₂ O ₅	M-4 and β -3, small	
KVO3 5 m/o	10 m/o	amounts of M-5 and	
		β-Ta ₂ O ₅	
Li2MoO4	Ta ₂ O ₅	LiTaO ₃	
Li ₂ CO ₃	Ta ₂ O ₅	A tetragonal bronze, yellow needles	
MoO ₃		$a_0 = 12.573$ Å, $c_0 = 3.96$ Å	
Flame	Ta ₂ O ₅	Poor quality crystals of	
fusion		α'' -Ta ₂ O ₅ (4)	
Pressed and	Nb ₂ O ₅ , 70-80%	Polycrystalline solid	
sintered	Ta ₂ O ₅ , 20–30%	solutions with α -Nb ₂ O ₅	
powders		structure	

TABLE	Π
-------	---

LATTICE PARAMETERS OF COMPOUNDS OBTAINED

Compound	Lattice Parameters	Multiples of Octahedral Diagonals	Space Group	Composition	Morphology and Remarks
γ-Nb₂O₅	14.70	4 × 3.675	$Pn2_1a$	Nb ₂ O ₅	{010} slabs, twinned (010)
	9 376	8 × 3.92 3 × 3.13			
B-Ta ₂ O ₅	14.648	$\frac{3 \times 3.15}{4 \times 3.66}$	$Pn2_1a$	Ta ₂ O ₅	$(0\overline{1}0), (010), (110), (\overline{1}10), \{201\},$
,	31.197	8 × 3.90	•		$\{101\}$ twinned $\{010\}$, elongated c
	9.395	3 × 3.13			· · · · · · · · · · · · · · · · · · ·
β-2	7.551	2 × 3.78	(Pb2 ₁ m?)	$Ta_2O_5 + 0.13 K_2O$	Clear, six-sided (010) plates,
	18.446	6 × 3.07	Pb**	$+ 0.03 P_2O_5$	elongated a
	3.66	1 × 3.66			
β-3	6.621	$3 imes 3.12/\sqrt{2}$	Pbnb	$Ta_2O_5 + 0.3 \text{ KPO}_3$	Variable morphology
	11.271	3×3.76			
	5.279	$2 imes 2.73/\sqrt{2}$			
M-4	(I) 8.532	(II) 8.488	(I) C*	$Ta_2O_5 + 0.26 K_2O$	2 species intergrowth, mica-like,
	5.305	5.305		$+ 0.66 P_2O_5$	pseudohexagonal flakes.
	8.099	8.910	(II) <i>P</i> 2 ₁ /*		Some thick pseudohexagonal
	93.0°	106.8°			plates (001)
M-5	12.45		P21/*	$Ta_2O_5+0.5KPO_3$	Prismatic b
	5.314				
	10.27				
···	<u>97.2°</u>				
GF	17.712	Pseudotetr.	Pseudo	$Ta_{2}O_{5} + 0.16 K_{2}O$	Isostructural with PbTa ₂ O ₆
	17.712	12.524	P4bm	$+ 0.02 V_2O_5$	Compare $NaNb_3O_8$ with lat. par.:
	3.918	3.918			12.372, 3 × 12.372, 3.954 (5)

with known standards. This furnished data to put the relative concentrations on an absolute scale. In view of the approximations involved in these procedures, the compositions listed should be regarded accurate only within about 10%.

III. Choice of Solvents

 Ta_2O_5 is not soluble in common oxide solvents such as PbO and B_2O_3 . V_2O_5 would form extensive solid solutions. KF and PbF₂ would form tantalum oxyfluorides readily. Attempts to use NaPO₃ were unsuccessful, but KPO₃ was found empirically to be suitable for Ta_2O_5 crystal growth.

However, KPO₃ polymerizes during the process and is converted either into an insoluble glass or into crystals of the A (high-temperature) form of KPO₃. It is then necessary to separate the products from the solidified solvent by hand under the microscope. It was thought that KVO₃, being related chemically, might also prove to be a suitable solvent but might remain soluble. These expectations were indeed met, but the products were different. It was found that the addition of as little as 5% KVO₃ to KPO₃ keeps the latter soluble, while, unfortunately, at the same time it promotes reactions with the solvent.

IV. Comments on Individual Compounds

The numbers given for γ -Nb₂O₅ and β -Ta₂O₅ in the multiples column of Table II represent multiples of the body diagonals of metal-oxygen octahedra and are equal, respectively to b_0 , c_0 , and $a_0/2$ of the subcell given by Lehovec (1). Corresponding entries for β -2 and β -3 represent attempts to interpret these compounds as different superstructures of the same subcell. β -Ta₂O₅ has 48 formula units per unit cell, and if the unit cell volumes of β -2 and β -3 are compared with it, β -3 gives an integral Z of 18, but β -2 a nonintegral value of $5\frac{3}{4}$. Both were proven to be something other than Ta₂O₅ by the chemical analyses, as foreshadowed by the mismatch of the multiples.

It is remarkable that Nb₂O₅ can be crystallized as the α form from KVO₃ and as the γ form from KPO₃. However, while the γ crystals were large, the α

FIG. 1. Reciprocal net h0l of M-4 intergrowth

crystals were too small for single-crystal work and could be identified only through their powder pattern.

In the case of Ta_2O_5 , the product-solvent relationship is not so simple. KPO₃ gives the β -form, in addition to several compounds, but KVO₃ gives only a compound, designated here GF (green ferroelectric). Pure KVO₃ again yielded crystals too small for single-crystal work. The powder pattern resembled that of orthorhombic, not that of tetragonal, $PbNb_2O_6$. The larger crystals obtained from a mixed solvent (see Table I) gave precession photographs of perfect tetragonal symmetry, and a precision diffractometer measurement showed a and b to be equal within one part in 20,000. However, optically, the crystals were biaxial without any question, and they were visibly twinned by a 90-deg rotation about c. Hence, they can only be orthorhombic. These facts are best explained by assuming that crystallization occurred close to the Curie temperature, and that attainment of equality between a and b does not fully coincide with the attainment of full structural tetragonality.

The crystals designated M-4 have the same appearance as, but different lattice parameters from, KNb_3O_8 , described by Nassau and Shiever (6). In addition to numerous large flakes of poor crystallographic quality, several thick plates were found that were suitable for X-ray analysis. The crystals were an intergrowth of two monoclinic species with a common b axis. The reciprocal c^* axes were parallel and had repeat distances in the ratio 10:11. a^* (I) coincides with $[40\overline{1}]^*$ (II). Figure I is a drawing of the h0l reciprocal net. The two components are set apart by the use of large and small circles. Open circles represent space-group extinctions for one component.

References

- 1. K. LEHOVEC, J. Less-Common Metals 7, 397 (1964).
- 2. G. M. WOLTEN AND A. B. CHASE, Z. Krist., 189, 365 (1969).
- 3. J. L. WARING AND R. S. ROTH, Acta Cryst. 17, 455 (1964).
- 4. F. LAVES AND W. PETTER, Helv. Phys. Acta 37, 617 (1964).
- 5. S. ANDERSSON, Acta Chem. Scand. 21, 1777 (1967).
- K. NASSAU AND J. W. SCHIEVER, Appl. Phys. Lett. 12, 349 (1968).